Open-open game of uncountable lenght

Andrzej Kucharski

Institute of Mathematics, University of Silesia ul. Bankowa 14, 40-007 Katowice

Winter School in abstract Analysis section Topology, Hejnice 2010

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in X

Authors assume that the length of the game is ω and called this game the open-open game.

We consider similar game but with one diference, the length of the game may be **uncountable**.

Authors assume that the length of the game is ω and called this game the open-open game.

We consider similar game but with one diference, the length of the game may be **uncountable**.

The space X is called κ -I-*favorable* whenever there exists a function

 $\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

 $B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$ for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in X.

The space X is called κ -I-*favorable* whenever there exists a function

$$\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

$$B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$$
 for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in *X*.

The space X is called κ -I-*favorable* whenever there exists a function

$$\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

$$B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$$
 for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in X.

The space X is called κ -I-*favorable* whenever there exists a function

$$\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

$$B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$$
 for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in X.

The space X is called κ -I-*favorable* whenever there exists a function

$$\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

$$B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$$
 for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in X.

The space X is called κ -I-*favorable* whenever there exists a function

$$\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

$$B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$$
 for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in X.

The space X is called κ -I-*favorable* whenever there exists a function

$$\sigma: \bigcup \{ \mathcal{T}^{\alpha} : \alpha \in \kappa \} \to \mathcal{T}$$

such that for each sequence $\{B_{\alpha} : \alpha \in \kappa\}$ consisting of elements of \mathcal{T} with $B_0 \subseteq \sigma(\emptyset)$ and

$$B_{\alpha} \subseteq \sigma(\{B_{\beta} : \beta < \alpha\})$$
 for each $\alpha \in \kappa$,

the union $\bigcup \{B_{\alpha} : \alpha \in \kappa\}$ is dense in X.

$$\mu(X) = \min\{\kappa \in Card : X \text{ is } \kappa\text{-l-favorable}\}.$$

and

 $sat(X) = min\{\tau : |B| < \tau \text{ for each family } B \text{ of pairwise disjoint open set}\}$

$$\mu(X) = \min\{\kappa \in \mathsf{Card} : X \text{ is } \kappa\text{-I-favorable}\}.$$

and

 $sat(X) = min\{\tau : |B| < \tau \text{ for each family } B \text{ of pairwise disjoint open set}\}$

and

$$\mu(X) = \min\{\kappa \in \mathsf{Card} : X \text{ is } \kappa ext{-l-favorable}\}.$$

 $sat(X) = min\{\tau : |\mathcal{B}| < \tau \text{ for each family } \mathcal{B} \text{ of pairwise disjoint open set}\}$

$$\mu(X) = \min\{\kappa \in \mathsf{Card} : X \text{ is } \kappa\text{-l-favorable}\}.$$

and

 $\mathsf{sat}(X) = \min\{\tau : |\mathcal{B}| < \tau \text{ for each family } \mathcal{B} \text{ of pairwise disjoint open set}\}$

The next theorem is analog of theorem 1 from A. Błaszczyk, *Souslin number and inverse limits*, Topology and measure III, Proc. Conf., Vitte/Hiddensee 1980, Part 1, 21 – 26 (1982).

A directed set Σ is said to be κ -complete if any chain of length κ consisting of its elements has least upper bound in Σ .

An inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is said to be a κ -complete, whenever Σ is κ -complete and for every chain $\{\sigma_{\alpha} : \alpha \in \kappa\} \subseteq \Sigma$, such that $\sigma = \sup\{\sigma_{\alpha} : \alpha \in \kappa\} \in \Sigma$, there holds

$$X_{\sigma} = \varprojlim \{ X_{\sigma_{\alpha}}, \pi_{\sigma_{\beta}}^{\sigma_{\alpha}} \}.$$

The next theorem is analog of theorem 1 from A. Błaszczyk, *Souslin number and inverse limits*, Topology and measure III, Proc. Conf., Vitte/Hiddensee 1980, Part 1, 21 – 26 (1982).

A directed set Σ is said to be κ -complete if any chain of length κ consisting of its elements has least upper bound in Σ .

An inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is said to be a κ -complete, whenever Σ is κ -complete and for every chain $\{\sigma_{\alpha} : \alpha \in \kappa\} \subseteq \Sigma$, such that $\sigma = \sup\{\sigma_{\alpha} : \alpha \in \kappa\} \in \Sigma$, there holds

 $X_{\sigma} = \varprojlim \{ X_{\sigma_{\alpha}}, \pi_{\sigma_{\beta}}^{\sigma_{\alpha}} \}.$

The next theorem is analog of theorem 1 from A. Błaszczyk, *Souslin number and inverse limits*, Topology and measure III, Proc. Conf., Vitte/Hiddensee 1980, Part 1, 21 – 26 (1982).

A directed set Σ is said to be κ -complete if any chain of length κ consisting of its elements has least upper bound in Σ .

An inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is said to be a κ -complete, whenever Σ is κ -complete and for every chain $\{\sigma_{\alpha} : \alpha \in \kappa\} \subseteq \Sigma$, such that $\sigma = \sup\{\sigma_{\alpha} : \alpha \in \kappa\} \in \Sigma$, there holds

$$X_{\sigma} = \varprojlim \{ X_{\sigma_{\alpha}}, \pi_{\sigma_{\beta}}^{\sigma_{\alpha}} \}.$$

A continuous surjection is called *skeletal* whenever for any non-empty open sets $U \subseteq X$ the closure of f[U] has non-empty interior.

Theorem

Let X be topological space and $\kappa = \mu(X)$. If X can be represented as an inverse limit of κ -complete system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ and all bounding map are skeletal surjection then $\mu(X) = \sup\{\mu(X_{\sigma}) : \sigma \in \Sigma\}$. A continuous surjection is called *skeletal* whenever for any non-empty open sets $U \subseteq X$ the closure of f[U] has non-empty interior.

Theorem

Let X be topological space and $\kappa = \mu(X)$. If X can be represented as an inverse limit of κ -complete system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ and all bounding map are skeletal surjection then $\mu(X) = \sup\{\mu(X_{\sigma}) : \sigma \in \Sigma\}$.

Theorem

The class C_{κ} is closed under any product.

Theorem

If X belongs to the class \mathcal{C}_{κ} then $\mathsf{c}(X)\leqslant\kappa$ and $\mu(X)\leqslant\kappa$.

Theorem

Each Tichonov space X can be dense embedde into topological space which belong to the class C_{κ} where $\kappa = \mu(X)^{<\mu(X)}$ and each X_{σ} is Tichonov.

< ロ > < 同 > < 三 > < 三

Theorem

The class C_{κ} is closed under any product.

Theorem

If X belongs to the class C_{κ} then $c(X) \leq \kappa$ and $\mu(X) \leq \kappa$

Theorem

Each Tichonov space X can be dense embedded into topological space which belong to the class C_{κ} where $\kappa = \mu(X)^{<\mu(X)}$ and each X_{σ} is Tichonov.

イロト イポト イラト イラ

Theorem

The class C_{κ} is closed under any product.

Theorem

If X belongs to the class \mathcal{C}_{κ} then $\mathsf{c}(X)\leqslant\kappa$ and $\mu(X)\leqslant\kappa$.

Theorem

Each Tichonov space X can be dense embedded into topological space which belong to the class C_{κ} where $\kappa = \mu(X)^{<\mu(X)}$ and each X_{σ} is Tichonov.

< ロ > < 同 > < 三 > < 三 >

Theorem

The class C_{κ} is closed under any product.

Theorem

If X belongs to the class \mathcal{C}_{κ} then $\mathsf{c}(X)\leqslant\kappa$ and $\mu(X)\leqslant\kappa$.

Theorem

Each Tichonov space X can be dense embedde into topological space which belong to the class C_{κ} where $\kappa = \mu(X)^{<\mu(X)}$ and each X_{σ} is Tichonov.

The space X is called I-favorable whenever it is ω -I-favorable

Theorem (Sz. Plewik and me 2008)

Let X be compact space.X is a I-favorable , iff

 $X = \varprojlim \{ X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma \},$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are skeletal.

Proposition(Sz. Plewik and me 2008)

If X is a I-favorable completely regular space then X can be dense embeding into $Y = \varprojlim \{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces Y_{σ} are metrizable, and all bonding maps π_{ρ}^{σ} are skeletal. The space X is called I-favorable whenever it is ω -I-favorable

Theorem (Sz. Plewik and me 2008)

Let X be compact space. X is a I-favorable , iff

$$X = \varprojlim \{ X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma \},$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ρ}^{σ} are skeletal.

Proposition(Sz. Plewik and me 2008)

If X is a I-favorable completely regular space then X can be dense embeding into $Y = \varprojlim \{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces Y_{σ} are metrizable, and all bonding maps π_{ρ}^{σ} are skeletal. The space X is called I-favorable whenever it is ω -I-favorable

Theorem (Sz. Plewik and me 2008)

Let X be compact space. X is a I-favorable , iff

$$X = \varprojlim \{ X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma \},$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ρ}^{σ} are skeletal.

Proposition(Sz. Plewik and me 2008)

If X is a I-favorable completely regular space then X can be dense embeding into $Y = \varprojlim \{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces Y_{σ} are metrizable, and all bonding maps π_{ϱ}^{σ} are skeletal.

Proposition

Let X be topological space then

 $c(X) \leqslant \mu(X) \leqslant sat(X) \leqslant c(X)^+$

W.G. Fleissner, *Some spaces related to topological inequalities proven by the Erdös-Rado theorem*, Proc. Amer. Math. Soc., 71 (1978), 313–320

W.G. Fleissner has constructed the space W such that $c(W) = \aleph_0$ and $c(W \times W \times W) = \aleph_2$. By previous proposition we could not request that each topological space X with $\mu(X) = \kappa$ can be dense embeding into $Y = \varprojlim \{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a κ -complete inverse system, all spaces Y_{σ} have weight equal κ , and all bonding maps π_{ρ}^{σ} are skeletal.

• • = • • = •

Example

Each linear ordered topological space X(LOTS) can be dense embedded into topological space which belongs to the class C_{κ} where $\kappa = d(X)$